
On the Differentiation of

inexplicable Functions *

Leonhard Euler

§367 Here, I call those functions inexplicable which cannot be defined either
by determined expressions nor by means of the roots of equations such
that they are not only not algebraic but it is also uncertain which kind of
transcendental quantities they must be referred to. An inexplicable function
of this kind is

1 +
1
2
+

1
3
+ · · ·+ 1

x
,

which certainly depends on x, but, if x is not an integer, cannot be explained
in any way. In like manner, this expression

1 · 2 · 3 · 4 · · · x

will be an inexplicable function of x, since, if x is any number, its value will
not only be not algebraic, but even cannot be expressed by means of a certain
kind of transcendental quantities. In general, the notion of such inexplicable
functions can be derived from series. For, let any series be propounded

1 2 3 4 · · · x

A + B + C + D + · · · + X,

*Original title: “ De Differentiatione Functionum inexplicabilum“, first published as part of
the book „Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum,
1755“, reprinted in in „Opera Omnia: Series 1, Volume 10, pp. 588 - 618 “, Eneström-Number
E212, translated by: Alexander Aycock for the „Euler-Kreis Mainz“
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whose sum, if it cannot be expressed by means of a finite formula, will yield
an inexplicable function of x, namely,

S = A + B + C + D + · · ·+ X.

Similarly, infinite products of terms of series as

P = A · B · C · D · · ·X

will exhibit inexplicable functions of x which by means of logarithms can be
reduced to the first form; for, it will be

ln P = ln A + ln B + ln C + ln D + · · ·+ ln X.

§368 Therefore, I decided to a explain a method to investigate the differenti-
als of inexplicable functions of this kind in this chapter. This subject, although
it seems to belong to the first part of the book, where the rules of differential
calculus where treated, nevertheless, since it requires a broader cognition
of the doctrine of series one was only able to get to in this second part, let
us, then forced to leave the natural order, treat it here now. But because this
investigation is completely new and has not been done by anybody until now,
in order to discuss this part of differential calculus, it is only required that
we rather try to sketch its first elements here. Furthermore, I will propound
several questions whose answer requires the differentiation of inexplicable
functions of this kind, by means of which at the same time the use of this
treatment, which without any doubt will be a lot greater in the future, is seen
more clearly.

§369 To differentiate inexplicable functions of this kind it is especially ne-
cessary that we investigate their values which they have, if one substitutes
x + ω for x. Therefore, let

1 2 3 4 · · · x

S = A + B + C + D + · · · + X

and put Σ for the value of S which it has, if one substitutes x + ω for x, and
let Z be the term of the series corresponding to the index x + ω. Now, denote
the terms corresponding to the indices x + 1, x + 2, x + 3 etc. by X′, X′′, X′′′
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etc. and the one corresponding to the infinite index x + ∞ by X|∞|. And in like
manner indicate the terms corresponding to the indices x + ω + 1, x + ω + 2,
x + ω + 3 etc. by Z′, Z′′, Z′′′ etc. and let Z|∞| be the term corresponding to the
index x + ω + ∞. Having constituted all this it will be

S′ = S + X′

S′′ = S + X′ + X′′

S′′′ = S + X′ + X′′ + X′′′

etc.

S|∞| = S + X′ + X′′ + X′′′ + · · ·+ X|∞|

Since in like manner also Σ is successively augmented by the terms Z′, Z′′

etc., it will be

Σ′ = Σ + Z′

Σ′′ = Σ + Z′ + Z′′

Σ′′′ = Σ + Z′ + Z′′ + Z′′′

etc.

Σ|∞| = Σ + Z′ + Z′′ + Z′′′ + · · ·+ Z|∞|

§370 Now, the nature of the series S, S′, S′′, S′′′ etc. it will have, if continued
to infinity, is to be considered; if the series is confounded with an arithmetic
progression at infinity, what happens, if the terms of the series X, X′, X′′, X′′′

etc. converge to a ratio of 1 such that the differences of the series S, S′, S′′ etc.
finally become equal, in this case the quantities S|∞|, S|∞+1|, S|∞+2| etc. will be
terms of an arithmetic progression, and because it is Σ|∞| = S|∞+ω|, because
of

S|∞+ω| = S|∞| + ω(S|∞+1| − S|∞|) = ωS|∞+1| + (1−ω)S|∞|

it will be

Σ|∞| = ωS|∞+1| + (1−ω)S|∞|.
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But it is S|∞+1| = S|∞| + X|∞+1|, whence it is

Σ|∞| = S|∞| + ωX|∞+1|,

from which one will obtain this equation

Σ + Z′ + Z′′ + Z′′′ + · · ·+ Z|∞|

= S + X′ + X′′ + X′′′ + · · ·+ X|∞| + ωX|∞+1|,

from which the value in question Σ the functions S has, if in it x + ω is
substituted for x, will be

Σ = S + ωX|∞+1| + X′ + X′′ + X′′′ + etc. to infinity

− Z′ − Z′′ − Z′′′ − etc. to infinity

Hence, if the infinitesimal terms of the series A, B, C, D etc. vanish, the term
ωX|∞+1| vanishes and can be omitted.

§371 Therefore, the value of Σ is expressed by means of new infinite series
which can be exhibited, if knows has the general term of the series A + B +
C + etc. from which the values of the terms Z′, Z′′, Z′′′ etc. can be defined.
Therefore, having put ω to be infinitely small, since Σ− S is the differential of
the function S, this differential dS will be expressed by means of an infinite
series. And if not even the higher powers of ω are neglected, one will have the
complete differential of this inexplicable function S; to show its nature quite
plainly, we will consider the following examples.

EXAMPLE 1

To find the differential of this inexplicable function

S = 1 +
1
2
+

1
3
+

1
4
+ · · ·+ 1

x
.

Since the general term X of this series is = 1
x and therefore
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X′ =
1

x + 1
Z′ =

1
x + 1 + ω

X′′ =
1

x + 2
Z′′ =

1
x + 2 + ω

X′′′ =
1

x + 3
Z′′′ =

1
x + 3 + ω

etc. etc.,

because of

X|∞+1| =
1

x + ∞ + 1
= 0,

if one puts x + ω instead of x, the function S will go over into Σ that it is

Σ = S +
1

x + 1
+

1
x + 2

+
1

x + 3
+ etc.

− 1
x + 1 + ω

− 1
x + 2 + ω

− 1
x + 3 + ω

− etc.,

or by collecting each to terms into single ones it will be

Σ = S +
ω

(x + 1)(x + 1 + ω)
+

ω

(x + 2)(x + 2ω)
+

ω

(x + 3)(x + 3 + ω)
+ etc.,

or because it is

1
x + 1 + ω

=
1

x + 1
− ω

(x + 1)2 +
ω2

(x + 1)3 −
ω3

(x + 1)4 + etc.

1
x + 2 + ω

=
1

x + 2
− ω

(x + 2)2 +
ω2

(x + 2)3 −
ω3

(x + 2)4 + etc.

etc.,

having ordered the series according to powers of ω it will be
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Σ = S + ω

(
1

(x + 1)2 +
1

(x + 2)2 +
1

(x + 3)2 +
1

(x + 4)2 + etc.
)

−ω2
(

1
(x + 1)3 +

1
(x + 2)3 +

1
(x + 3)3 +

1
(x + 4)3 + etc.

)
+ ω3

(
1

(x + 1)4 +
1

(x + 2)4 +
1

(x + 3)4 +
1

(x + 4)4 + etc.
)

−ω4
(

1
(x + 1)5 +

1
(x + 2)5 +

1
(x + 3)5 +

1
(x + 4)5 + etc.

)
etc.

Having taken dx for ω we will obtain the complete differential of the pro-
pounded function S

dS = dx
(

1
(x + 1)2 +

1
(x + 2)2 +

1
(x + 3)2 +

1
(x + 4)2 + etc.

)
− dx2

(
1

(x + 1)3 +
1

(x + 2)3 +
1

(x + 3)3 +
1

(x + 4)3 + etc.
)

+ dx3
(

1
(x + 1)4 +

1
(x + 2)4 +

1
(x + 3)4 +

1
(x + 4)4 + etc.

)
− dx4

(
1

(x + 1)5 +
1

(x + 2)5 +
1

(x + 3)5 +
1

(x + 4)5 + etc.
)

etc.

EXAMPLE 2

To find the differential of this inexplicable function of x

S = 1 +
1
3
+

1
5
+

1
7
+ · · ·+ 1

2x− 1
.

Since the general term of this series is X = 1
2x−1 , it will be
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X′ =
1

2x + 1
Z′ =

1
2x + 1 + ω

X′′ =
1

2x + 3
Z′′ =

1
2x + 3 + ω

X′′′ =
1

2x + 5
Z′′′ =

1
2x + 5 + ω

etc. etc.,

Because of the vanishing and equal infinitesimal terms of this series the value
of S, if one puts x + ω instead of x, will result as

Σ = S +
1

2x + 1
+

1
2x + 3

+
1

2x + 5
+ etc.

− 1
2x + 1 + 2ω

− 1
2x + 3 + 2ω

− 1
2x + 5 + 2ω

− etc.

or

Σ = S +
2ω

(2x + 1)(2x + 1 + 2ω)
+

2ω

(2x + 3)(2x + 3 + 2ω)
+ etc.

But if the single terms are expanded into a power series in ω, it will be

Σ = S + 2ω

(
1

(2x + 1)2 +
1

(2x + 3)2 +
1

(2x + 5)2 + etc.
)

− 4ω2
(

1
(2x + 1)3 +

1
(2x + 3)3 +

1
(2x + 5)3 + etc.

)
+ 8ω3

(
1

(2x + 1)4 +
1

(2x + 3)4 +
1

(2x + 5)4 + etc.
)

− 16ω4
(

1
(2x + 1)4 +

1
(2x + 3)4 +

1
(2x + 5)4 + etc.

)
etc.

Now put dx for ω and the complete differential of the propounded inexplicable
function S will be
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dS = 2dx
(

1
(2x + 1)2 +

1
(2x + 3)2 +

1
(2x + 5)2 + etc.

)
− 4dx2

(
1

(2x + 1)3 +
1

(2x + 3)3 +
1

(2x + 5)3 + etc.
)

+ 8dx3
(

1
(2x + 1)4 +

1
(2x + 3)4 +

1
(2x + 5)4 + etc.

)
− 16dx4

(
1

(2x + 1)4 +
1

(2x + 3)4 +
1

(2x + 5)4 + etc.
)

etc.

EXAMPLE 3

To find the complete differential of this inexplicable function of x

S = 1 +
1
2n +

1
3n +

1
4n + · · ·+ 1

xn .

Since the general term of this series is = 1
xn , the infinitesimal terms will be

vanishing and equal to each other. And hence because of

X′ =
1

(x + 1)n Z′ =
1

(x + 1 + ω)n

X′′ =
1

(x + 2)n Z′′ =
1

(x + 2 + ω)n

X′′′ =
1

(x + 3)n Z′′′ =
1

(x + 3 + ω)n

etc. etc.,

it will be

X′ − Z′ =
nω

(x + 1)n+1 −
n(n + 1)ω2

2(x + 1)n+2 +
n(n + 1)(n + 2)ω3

6(x + 1)n+3 − etc.

X′′ − Z′′ =
nω

(x + 2)n+1 −
n(n + 1)ω2

2(x + 2)n+2 +
n(n + 1)(n + 2)ω3

6(x + 2)n+3 − etc.

etc.,
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from which one finds

Σ− S = nω

(
1

(x + 1)n+1 +
1

(x + 2)n+1 +
1

(x + 3)n+1 + etc.
)

−n(n + 1)
1 · 2 ω2

(
1

(x + 1)n+2 +
1

(x + 2)n+2 +
1

(x + 3)n+2 + etc.
)

+
n(n + 1)(n + 2)

1 · 2 · 3 ω3
(

1
(x + 1)n+3 +

1
(x + 2)n+3 +

1
(x + 3)n+3 + etc.

)
etc.

Therefore, having put ω = dx the complete differential in question of the
function S will be

dS = ndx
(

1
(x + 1)n+1 +

1
(x + 2)n+1 +

1
(x + 3)n+1 + etc.

)
−n(n + 1)

1 · 2 dx2
(

1
(x + 1)n+2 +

1
(x + 2)n+2 +

1
(x + 3)n+2 + etc.

)
+

n(n + 1)(n + 2)
1 · 2 · 3 dx3

(
1

(x + 1)n+3 +
1

(x + 2)n+3 +
1

(x + 3)n+3 + etc.
)

etc.

§372 From these also the sums of these series can be interpolated or the
values of the summatory terms can be exhibited, if the number of terms is
not an integer number. For, if one puts x = 0, it will also be S = 0 and Σ will
express the sum of as many terms as the number ω contains unities, even
though this number ω is not an integer. So, if in the first example one puts

Σ = 1 +
1
2
+

1
3
+ · · ·+ 1

ω
,

it will be

Σ =
ω

1(1 + ω)
+

ω

2(2 + ω)
+

ω

3(3 + ω)
+

ω

4(4 + ω)
+ etc.

or
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∑ = ω

(
1 +

1
4
+

1
9
+

1
16

+
1

25
+ etc.

)
−ω2

(
1 +

1
23 +

1
33 +

1
43 +

1
52 + etc.

)
−ω3

(
1 +

1
24 +

1
34 +

1
44 +

1
54 + etc.

)
etc.

In the third example on the other hand it will be

Σ = 1 +
1
2n +

1
3n +

1
4n + · · ·+ 1

ωn .

The value of Σ, whether ω is an integer number or a fractional number, will
be expressed by means of the following series

Σ = nω

(
1 +

1
2n+1 +

1
3n+1 +

1
4n+1 + etc.

)
−n(n + 1)

1 · 2 ω2
(

1 +
1

2n+2 +
1

3n+2 +
1

4n+2 + etc.
)

+
n(n + 1)(n + 2)

1 · 2 · 3 ω3
(

1 +
1

2n+3 +
1

3n+3 +
1

4n+3 + etc.
)

etc.

§373 These same things can also be applied to a general series; for, because
it is

1 2 3 4 · · · · · · x

S = A + B + C + D + · · · + X

and having put x + ω instead of x X goes over into Z and S into Σ, it will be

Z = X +
ωdX

dx
+

ω2ddX
1 · 2dx2 +

ω3d3X
1 · 2 · 3dx3 + etc.,

and since in like manner Z′, Z′′, Z′′′ etc. are expressed by means of X′, X′′,
X′′′ etc., it will be
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Σ = S + ωX|∞+1| − ω

dx
d.(X′ + X′′ + X′′′ + X′′′′ + etc.)

− ω2

1 · 2dx2 dd.(X′ + X′′ + X′′′ + X′′′′ + etc.)

− ω3

1 · 2 · 3dx3 d3.(X′ + X′′ + X′′′ + X′′′′ + etc.)

etc.,

and if X|∞+1| is not = 0, it can be expressed in this way that the consideration
of the infinity is avoided

X|∞+1| = X′ + (X′′ − X′) + (X′′′ − X′′) + (X′′′′ − X′′′) + etc.

and therefore it will be

Σ = S + ωX′ + ω((X′′ − X′) + (X′′′ − X′′) + (X′′′′ − X′′′) + etc.)

− ω

dx
d.(X′ + X′′ + X′′′ + X′′′′ + etc.)

− ω2

2dx2 dd.(X′ + X′′ + X′′′ + X′′′′ + etc.)

− ω3

6dx3 d3.(X′ + X′′ + X′′′ + X′′′′ + etc.)

etc.

If one puts ω = dx, the following differential of

S = A + B + C + · · ·+ X

will result expressed this way

dS = X′dx + dx((X′′ − X′) + (X′′′ − X′′) + (X′′′′ − X′′′) + etc.)

−d.(X′ + X′′ + X′′′ + X′′′′ + etc.)

−1
2

dd.(X′ + X′′ + X′′′ + X′′′′ + etc.)

−1
6

d3.(X′ + X′′ + X′′′ + X′′′′ + etc.)

etc.
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§374 Let us put that it is x = 0; it will be

X′ = A, X′′ = B etc.

and hence X′ + X′′ + X′′′ + etc. will be an infinite series whose general term
is = X. Further, form the series from these general terms

dX
dx

,
ddX
2dx2 ,

d3X
6dx3 ,

d4X
24dx4 etc.

the sum of which series, if they are continued to infinity, we want to be

SX = A, S dX
dx

= B, S ddX
2dx2 = C, S d3X

6dx3 = D etc.;

and since having put x = 0 also S = 0, Σ will be the sum of the series

A + B + C + D + · · ·+ Z

containing ω terms; for, Z is the term of the index ω, no matter whether ω is
an integer number or a fraction. Therefore, one will have

Σ = ωA + ω((B− A) + (C− B) + (D− C) + etc.)

−ωB−ω2C−ω3D−ω4E− etc.,

where the first series can be omitted, if the terms of the propounded series
finally vanish.

§375 Now, let us write x instead of ω and Σ will go over into S such that it is

1 2 3 4 · · · · · · x

S = A + B + C + D + · · · + X

and the same value of S will be expressed by means of an infinite series this
way

S = Ax + x((B− A) + (C− B) + (D− C) + etc.)

−Bx− Cx2 −Dx3 − Ex4 − Fx5 − etc.;
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since its value is expressed equally distinctly, no matter whether x is an integer
number or a fraction, one is able to express the value of S of any order from
this easily as:

dS
dx

= A + (B− A) + (C− B) + (D− C) + etc.

−B− 2Cx − 3Dx2 − 4Ex3 − etc.
ddS
2dx2 = − C − 3Dx− 6Ex2 − 10Fx3 − etc.

d3S
6dx3 = −D − 4Ex − 10Fx2 − 20Gx3 − etc.

d4S
24dx4 = − E − 5Fx − 15Gx2 − 35Hx3 − etc.

Therefore, since the complete differential is

= dS +
1
2

ddS +
1
6

d3S +
1
24

d4S + etc.,

the complete differential of the propounded function S will be

dS = Adx + (B− A)dx + (C− B)dx + (D− C)dx + etc.

−Bdx− C(2xdx + dx2)−D(3x2dx + 3xdx2 + dx3)

−E(4x3dx + 6x2dx2 + 4xdx3 + dx4)− etc.

§376 Therefore, this way the complete differential of any inexplicable functi-
on S can be assigned, if the infinitesimal terms of the series

A + B + C + D + etc.

either vanish or become equal to each other. For, if the infinitesimal terms of
this series were not = 0, then the sum of the series B which is formed from
the general term dX

dx , will become infinite, but together with the series

A + (B− A) + (C− B) + (D− C) + etc.

it will constitute a finite sum. But it can happen that the terms of the series
A + B + C + D+etc. are augmented to infinity in such a way that not only
the sum of the series B, but also the sum of the series C becomes infinitely
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large, in which case it does not suffice to have added the series A + (B− A) +
(C− B)+etc.; but since in this case the infinitesimal values considered in §
370, namely S|∞|, S|∞+1|, S|∞+2|, are not any longer terms in an arithmetic
progression, as we had assumed before, the nature of this progression will
have to be taken into account. As we assumed the first differences of these
progressions to be equal, so we will extend the method even further, if we
set that just the second or the third or the higher differences of these values
become constant.

§377 Arguing exactly as before in § 369, let us put that just the second
differences of the mentioned values are constant

S|∞|, S|∞+1|, S|∞+2|

First Differences

X|∞+1|, X|∞+2|

Second Differences

X|∞+2| − X|∞+1|

Therefore, it will be

Σ|∞| = S|∞+ω| = S|∞| + ωX|∞+1| +
ω(ω− 1)

1 · 2 (X|∞+2| − X|∞+1|)

= S|∞| − ω(ω− 3)
1 · 2 X|∞+1| +

ω(ω− 1)
1 · 2 X|∞+2|.

Therefore, one will have this equation

Σ + Z′ + Z′′ + Z′′′ + · · ·+ Z|∞|

= S + X′ + X′′ + X′′′ + · · ·+ X|∞| − ω(ω− 3)
1 · 2 X|∞+1| +

ω(ω− 1)
1 · 2 X|∞+2|,

from which one finds

Σ = S + X′ + X′′ + X′′′ + X′′′′ + etc. to infinity

− Z′ − Z′′ − Z′′′ − Z′′′′ − etc. to infinity

+ ωX|∞+1| +
ω(ω− 1)

1 · 2 (X|∞+2| − X|∞+1|).
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But these infinitesimal terms can be represented in such a way that it is

Σ = S + X′ + X′′ + X′′′ + X′′′′ + etc. to infinity

− Z′ − Z′′ − Z′′′ − Z′′′′ − etc. to infinity

+ωX′ + ω

 + X′′ + X′′′ + X′′′′ + X′′′′′ + etc.

− X′ − X′′ − X′′′ + X′′′′ − etc.


whence the law describing the nature of this expression, if just the third or
fourth or higher differences were constant, is obvious.

§378 Because it is, as we demonstrated above,

Z = X +
ωdX
1dx

+
ω2ddX
1 · 2dx2 +

ω3d3X
1 · 2 · 3dx3 + etc.,

if for Z′, Z′′, Z′′′ etc. we substitute the values to result from them, the value of
S, if one writes x + ω instead of x, will be the following:

Σ = S + ωX′ + ω

 + X′′ + X′′′ + X′′′′ + X′′′′′ + etc.

− X′ − X′′ − X′′′ + X′′′′ − etc.


+

ω(ω− 1)
1 · 2 X′′

− ω(ω− 1)
1 · 2 X′

+
ω(ω− 1)

1 · 2


+ X′′′ + X′′′′ + X′′′′′ + etc.

− 2X′′ − 2X′′′ − 2X′′′′ − etc.

+ X′ + X′′ + X′′′ + etc.


− ω

dx
d. (X′ + X′′ + X′′′ + X′′′′ + etc.)

− ω2

2dx2 d2.(X′ + X′′ + X′′′ + X′′′′ + etc.)

− ω3

6dx3 d3.(X′ + X′′ + X′′′ + X′′′′ + etc.)

etc.
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If one puts dx instead of ω, the complete differential of the propounded
inexplicable function S will result, namely

dS = X′dx + dx

 + X′′ + X′′′ + X′′′′ + X′′′′′ + etc.

− X′ − X′′ − X′′′ + X′′′′ − etc.


− X′′

dx(1− dx)
1 · 2

+ X′
dx(1− dx)

1 · 2

− dx(1− dx)
1 · 2


+ X′′′ + X′′′′ + X′′′′′ + etc.

− 2X′′ − 2X′′′ − 2X′′′′ − etc.

+ X′ + X′′ + X′′′ + etc.



+ X′′′
dx(1− dx)(2− dx)

1 · 2 · 3

− 2X′′
dx(1− dx)(2− dx)

1 · 2 · 3

+ X′
dx(1− dx)(2− dx)

1 · 2 · 3

− dx(1− dx)(2− dx)
1 · 2 · 3



+ X′′′′ + X′′′′′ + etc.

− 3X′′′ − 3X′′′′ − etc.

+ 3X′′ + 3X′′′ + etc.

− X′′ − X′′′ − etc.


etc.

−d.(X′ + X′′ + X′′′ + X′′′′ + X′′′′′ + etc.)

−1
2

dd.(X′ + X′′ + X′′′ + X′′′′ + X′′′′′ + etc.)

−1
6

d3.(X′ + X′′ + X′′′ + X′′′′ + X′′′′′ + etc.)

− 1
24

d4.(X′ + X′′ + X′′′ + X′′′′ + X′′′′′ + etc.)

etc.

which expression extends very far and, no matter at which point the diffe-
rences just became constant, will exhibit the differential in question. For, this
formula is accommodated to constant differences and at the same time the
law is plain, if it is necessary to proceed further.
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§379 If the series A + B + C + D+ etc., from which the inexplicable function

1 2 3 4 x

S = A + B + C + D + · · · + X

is formed, was of such a nature that the infinitesimal terms vanish, then, as
we already noted, it will be

dS = −d.(X′ + X′′ + X′′′ + X′′′′ + etc.)

−1
2

dd.(X′ + X′′ + X′′′ + X′′′′ + etc.)

−1
6

d3(X′ + X′′ + X′′′ + X′′′′ + etc.)

− 1
24

d4.(X′ + X′′ + X′′′ + X′′′′ + etc.)

But if the infinitesimal terms of that series were not = 0, but nevertheless have
vanishing differences, then additionally this expression is to be added

dx


+ X′′ + X′′′ + X′′′′ + X′′′′′ + etc.

X′

− X′ − X′′ − X′′′ + X′′′′ − etc.


But if just the second differences of the infinitesimal terms of this series
A + B + C + D + etc. vanish, then one furthermore has to add

dx(dx− 1)
1 · 2



+ X′′′ + X′′′′ + X′′′′′ + etc.

+ X′′

− 2X′′ − 2X′′′ − 2X′′′′ − etc.

− X′

+ X′ + X′′ + X′′′ + etc.


And if just the third differences of the mentioned infinitesimal terms vanish,
then except for the already exhibited expressions one additionally has to add

17



dx(dx− 1)(dx− 2)
1 · 2 · 3



+ X′′′′ + X′′′′′ + X′′′′′′ + etc.

+ X′′′

− 3X′′′ − 3X′′′′ − 3X′′′′′ − etc.

− 2X′′

+ 3X′′ + 3X′′′ + 3X′′′′ + etc.

+ X′

− X′′ − X′′′ − X′′′ − etc.


And this will be the nature of the expressions additionally to be added, if
just higher differences of the infinitesimal terms of the series A + B + C +
D + etc. vanish. And hence, no matter which series is assumed, as long as its
infinitesimal terms are finally reduced to vanishing differences, one will be
able to define the differential of the inexplicable function formed from it.

§380 If one puts x = 0, it will be X′ = A, X′′ = B, X′′′ = C etc. Therefore, as
A + B + C + D+ etc. is the series whose general term is X, if from the general
terms

dX
dx

,
ddX
2dx2 ,

d3X
6dx3 ,

d4X
24dx4 etc.

in like manner infinite series are formed and its sums are denoted by B, C, D,
E etc., respectively, the sum of ω terms of the series

A + B + C + D + etc.

will be expressed in such a way that it does not matter whether ω is an integer
or not. Therefore, let us put x for ω that it is

1 2 3 4 x

S = A + B + C + D + · · · + X

and if the infinitesimal terms of this series vanish, it will be

S = −Bx− Cx2 −Dx3 − Ex4 − etc.

But if at least the infinitesimal terms have constant first differences, then one
additionally has to add this

18



x


+ B + C + D + E + etc.

A
− A − B − C + D − etc.


But if just the second differences of those infinitesimal terms vanish, then
furthermore one has to add

x(x− 1)
1 · 2



+ C + D + E + F + etc.

+ B
− 2B − 2C − 2D − 2E − etc.

− C
+ A + B + C + D + etc.


If just the third differences vanish, then additionally this infinite series has to
be added

x(x− 1)(x− 2)
1 · 2 · 3



+ D + E + F + G + etc.

+ C
− 3C − 3D − 3E − 3F − etc.

− 2B
+ 3B + 3C + 3D + 3E + etc.

+ A
− A − B − C − D − etc.


etc.

§381 Let us also apply these things to the kind of inexplicable functions that
consists of continuous products of several terms of the propounded series
A + B + C + D etc., and let

1 2 3 4 · · · x

S = A · B · C · D · · ·X

and at first find the value Σ into which S is transformed, if one writes x + ω

instead of x. But let us, as before, put that Z is the term corresponding to the
index is = x + ω of the series A + B + C + D+etc. while X corresponds to the
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index x. To reduce this to the preceding case, let us take logarithms and it will
be

ln S = ln A + ln B + ln C + ln D + · · ·+ ln X.

If now the infinitesimal terms of this series vanish by applying the same
method we used before it will be

ln Σ = ln S + ln X′ + ln X′′ + ln X′′′ + etc.

− ln Z′ − ln Z′′ − ln Z′′′ − etc.

and hence by going back to numbers it will be

Σ = S · X′

Z′
· X′′

Z′′
· X′′′

Z′′′
· X′′′′

Z′′′′
· etc.;

therefore, this expression holds, if the infinitesimal terms of the series A, B, C,
D etc. become equal to 1. But if the logarithms of the infinitesimal terms of
this series do not vanish, but nevertheless have vanishing differences, then to
that series we found for ln Σ one additionally has to add this series

ω ln X′ + ω

(
ln

X′′

X′
+ ln

X′′′

X′′
+ ln

X′′′′

X′′′
+ etc.

)
and so by taking numbers one will have

Σ = S · X′ω · X′ωX′′1−ω

Z′
· X′′′ωX′′1−ω

Z′′
· X′′′′ωX′′′1−ω

Z′′′
· etc.

§382 If we put x = 0 in which case S = 1 and X′ = A, X′′ = B, X′′′ = C etc.,
Σ will denote the product of ω terms of this series A, B, C, D etc. If we write
x for ω that Σ obtains the value we had attributed to S before such that it is

1 2 3 4 · · · x

S = A · B · C · D · · ·X,

since now Z′, Z′′, Z′′′ etc. go over into X′, X′′, X′′′ etc., if the logarithms of the
infinitesimal terms of this series A, B, C, D, E etc. vanish, S will be expressed
this way
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S =
A
X′
· B

X′′
· C

X′′′
· D

X′′′′
· E

X′′′′′
· etc.

But if just the differences of the logarithms of the infinitesimal terms of
the series A, B, C, D etc. vanish, then this function S will be expressed the
following way that it is

S = Ax · Bx A1−x

X′
· CxB1−x

X′′
· DxC1−x

X′′′
· ExD1−x

X′′′
· etc.;

If just the second differences of those logarithms vanish, it is easily concluded
from the preceding, factors of which kind are to be added; we omit this case
here, since it usually does not occur. Moreover, I will show the use of these
expressions in the task of interpolation in the following chapter.

§383 Since here mainly the differentiation of inexplicable functions is pro-
pounded, let us investigate the differential of this function

S = A · B · C · D · · ·X.

For this, let us go back to the equation found before

ln Σ = ln S + ln X′ + ln X′′ + ln X′′′ + etc.

− ln Z′ − ln Z′′ − ln Z′′′ − etc.,

and since ln Z results from ln X, if one writes x + ω instead of x, it will be

ln Z = ln X +
ω

dx
d. ln X +

ω2

2dx2 dd. ln X +
ω3

6dx3 d3. ln X + etc.;

having substituted these values for ln Z′, ln Z′′′, ln Z′′′ etc. one will have

ln Σ = ln S− ω

dx
d. (ln X′ + ln X′′ + ln X′′′ + ln X′′′′ + etc.)

− ω2

2dx2 dd.(ln X′ + ln X′′ + ln X′′′ + ln X′′′′ + etc.)

21



− ω3

6dx3 d3. (ln X′ + ln X′′ + ln X′′′ + ln X′′′′ + etc.)

etc.

Now put ω = dx and it will be ln Σ = ln S + d. ln S and hence it will be

dS
S

= −d. (ln X′ + ln X′′ + ln X′′′ + ln X′′′′ + etc.)

− 1
2

dd.(ln X′ + ln X′′ + ln X′′′ + ln X′′′′ + etc.)

− 1
6

d3. (ln X′ + ln X′′ + ln X′′′ + ln X′′′′ + etc.)

etc.,

which formula holds, if the logarithms of the infinitesimal terms of the series A,
B, C, D etc. vanish; but if they do not vanish, but nevertheless have vanishing
differences, then to the preceding expression of the complete differential one
additionally has to add this series

dx ln X′ + dx
(

ln
X′′

X′
+ ln

X′′′

X′′
+ ln

X′′′′

X′′′
+ etc.

)
in order to obtain the complete differential.

§384 The same can also be achieved in another way. Put x = 0 in which case
ln S goes over into 0. Then, form series whose general terms are

ln X,
d. ln X

dx
,

dd. ln X
2dx2 ,

d3. ln X
6dx3 etc.,

and we want the sums of these infinite series to be A, B, C, D etc., respectively.
Write x for ω that Σ = S and it will be

ln S = −Bx− Cx2 −Dx3 − Ex4 − etc.,

if the logarithms of the infinitesimal terms of the series A, B, C, D etc. whose
general term is X vanish; but if just the differences of these logarithms vanish,
it will be

ln S = x ln A + x
(

ln
B
A

+ ln
C
B
+ ln

D
C

+ ln
E
D

+ etc.
)
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−Bx− Cx2 −Dx3 −Dx4 − etc.

And hence the differential of ln S will be

dS
S

= dx ln A + dx
(

ln
B
A

+ ln
C
B
+ ln

D
C

+ ln
E
D

+ etc.
)

−Bxdx− 2Cxdx− 3Dx2dx− 4Ex3dx− etc.

But if the complete differential is desired, it will be

dS
S

= dx ln A + dx
(

ln
B
A

+ ln
C
B
+ ln

D
C

+ ln
E
D

+ etc.
)

−Bdx− C(2xdx + dx2)−D(3xxdx + 3xdx2 + dx3)− etc.

To show the use of these formulas we add the following examples which we
resolve in both ways.

EXAMPLE 1

To find the differential of this inexplicable function

S =
1
2
· 3

4
· 5

6
· 7

8
· · · 2x− 1

2x
.

Here, it is especially to be noted that the infinitesimal terms of these factors go
over into 1 and hence their logarithms vanish. Since it is X = 2x−1

2x , it will be

X′ =
2x + 1
2x + 1

, X′′ =
2x + 3
2x + 4

, X′′′ =
2x + 5
2x + 6

etc.

and in general

X|n| =
2x + 2n− 1

2x + 2n
;

therefore, it will be

ln X|n| = + ln(2x + 2n− 1)− ln(2x + 2n)

d. ln X|n| = +
2dx

2x + 2n− 1
− 2dx

2x + 2n
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dd. ln X|n| = − 4dx2

(2x + 2n− 1)2 +
4dx2

(2x + 2n)2

d3. ln X|n| = +
2 · 2 · 4dx2

(2x + 2n− 1)3 −
2 · 2 · 4dx2

(2x + 2n)3

d4. ln X|n| = − 2 · 2 · 4 · 6dx4

(2x + 2n− 1)4 +
2 · 2 · 4 · 6dx4

(2x + 2n)4

etc.;

therefore, the complete differential will be

dS
S

=− 2dx


1

2x + 1
+

1
2x + 3

+
1

2x + 5
+ etc.

− 1
2x + 2

− 1
2x + 4

− 1
2x + 6

− etc.


+

4
2

dx2


1

(2x + 1)2 +
1

(2x + 3)2 +
1

(2x + 5)2 + etc.

− 1
(2x + 2)2 −

1
(2x + 4)2 −

1
(2x + 6)2 − etc.


− 8

3
dx3


1

(2x + 1)3 +
1

(2x + 3)3 +
1

(2x + 5)3 + etc.

− 1
(2x + 2)3 −

1
(2x + 4)3 −

1
(2x + 6)3 − etc.


etc.

But if only the first differential is in question, it will be

dS
S

= −2dx ·
(

1
(2x + 1)(2x + 2)

+
1

(2x + 3)(2x + 4)
+

1
(2x + 5)(2x + 6)

+ etc.
)

,

which same is found by means of the other method given in § 394. Since it is

ln X = ln
2x− 1

2x
,

it will be

d. ln X
dx

=
2

2x− 1
− 1

x
,

dd. ln X
2dx2 = − 2

(2x− 1)2 +
1

2xx
,

d3 ln X
6dx3 =

8
3(2x− 1)3 −

1
3x3 etc.
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and hence it will be

A = ln
1
2
+ ln

3
4
+ ln

5
6
+ ln

7
8
+ etc.

B =


2
1
+

2
3
+

2
5
+

2
7
+

2
9
+ etc.

−2
2
− 2

4
− 2

6
− 2

8
− 2

10
− etc.

 = 2 ln 2

C = −4
2


1
1
+

1
32 +

1
52 +

1
72 + etc.

− 1
22 −

1
42 −

1
62 −

1
82 − etc.


D = +

8
3


1
1
+

1
33 +

1
53 +

1
73 + etc.

− 1
23 −

1
43 −

1
63 −

1
83 − etc.


E = −16

4


1
1
+

1
34 +

1
54 +

1
74 + etc.

− 1
24 −

1
44 −

1
64 −

1
84 − etc.


etc.

or it will be

B = +
2
1

(
1− 1

2
+

1
3
− 1

4
+

1
5
− etc.

)
C = −4

2

(
1− 1

22 +
1
32 −

1
42 +

1
52 − etc.

)
D = +

8
3

(
1− 1

23 +
1
33 −

1
43 +

1
53 − etc.

)
E = −16

4

(
1− 1

24 +
1
34 −

1
44 +

1
54 − etc.

)
etc.
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Having substituted the found values it will be

dS
S

= −2dx
(

1− 1
2

+
1
3
− 1

4
+

1
5
− etc.

)
+ 4xdx

(
1− 1

22 +
1
32 −

1
42 +

1
52 − etc.

)
− 8x2dx

(
1− 1

23 +
1
33 −

1
43 +

1
53 − etc.

)
+ 16x3dx

(
1− 1

24 +
1
34 −

1
44 +

1
54 − etc.

)
etc.

If x = 0 in which case ln S = 0 and S = 1, it will be dS = −2dx ln 2.

EXAMPLE 2

To find the differential of this inexplicable function

S = 1 · 2 · 3 · 4 · · · x.

The terms of this series 1, 2, 3, 4 etc. grow to infinity in such a way that the
differences of the logarithms vanish; for, it is

ln(∞ + 1)− ln ∞ = ln
(

1 +
1
∞

)
=

1
∞

= 0.

Since it is X = x, it will be

X′ = x + 1, X′′ = x + 2, X′′′ = x + 3 etc.;

but, further because of ln X = ln x it will be

d. ln X =
dx
x

, dd. ln X = −dx2

x2 , d3. ln X =
2dx3

x3 , d4. ln X = −2 · 3dx4

x4 etc.;

hence, if the last logarithms would vanish, it would be
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dS
S

= −dx
(

1
x + 1

+
1

x + 2
+

1
x + 3

+
1

x + 4
+ etc.

)
+

dx2

2

(
1

(x + 1)2 +
1

(x + 2)2 +
1

(x + 3)2 +
1

(x + 4)2 + etc.
)

− dx3

3

(
1

(x + 1)3 +
1

(x + 2)3 +
1

(x + 3)3 +
1

(x + 4)3 + etc.
)

etc.

But because just the differences of the logarithms vanish, one additionally has
to add this expression

dx ln(x + 1) + dx
(

ln
x + 2
x + 1

+ ln
x + 3
x + 2

+ ln
x + 4
x + 3

+ ln
x + 5
x + 4

+ etc.
)

.

But because it is

ln
x + 2
x + 1

=
1

x + 1
− 1

2(x + 1)2 +
1

3(x + 1)3 −
1

4(x + 1)4 + etc.

ln
x + 3
x + 2

=
1

x + 2
− 1

2(x + 2)2 +
1

3(x + 2)3 −
1

4(x + 2)4 + etc.

etc.,

the complete differential will be

dS
S

= dx ln(x + 1)− 1
2
(dx− dx2)

(
1

(x + 1)2 +
1

(x + 2)2 +
1

(x + 3)2 + etc.
)

+
1
3
(dx− dx3)

(
1

(x + 1)3 +
1

(x + 2)3 +
1

(x + 3)3 + etc.
)

− 1
4
(dx− dx4)

(
1

(x + 1)4 +
1

(x + 2)4 +
1

(x + 3)4 + etc.
)

− 1
5
(dx− dx5)

(
1

(x + 1)5 +
1

(x + 2)5 +
1

(x + 3)5 + etc.
)

etc.
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But if we want to express this differential by means of the other method, since
it is

ln X = ln x,
d. ln X

dx
=

1
x

,
dd. ln X

2dx2 = − 1
2x2 ,

d3. ln X
6dx3 =

1
3x3 ,

d4. ln X
24dx4 = − 1

4x4 etc.,

one will have the following series

A = ln 1 + ln 2 + ln 3 + ln 4 + ln 5 + etc.

B = +1
(

1 +
1
2

+
1
3

+
1
4

+
1
5

+ etc.
)

C = −1
2

(
1 +

1
22 +

1
32 +

1
42 +

1
52 + etc.

)
C = +

1
3

(
1 +

1
23 +

1
33 +

1
43 +

1
53 + etc.

)
D = −1

4

(
1 +

1
24 +

1
34 +

1
44 +

1
54 + etc.

)
etc.

Therefore, because of ln A = ln 1 = 0 from § 384 it will be

ln S = x
(

ln
2
1
+ ln

3
2
+ ln

4
3
+ ln

5
4
+ etc.

)
− x

(
1 +

1
2

+
1
3

+
1
4

+ etc.
)

+
1
2

x2
(

1 +
1
22 +

1
32 +

1
42 + etc.

)
− 1

3
x3
(

1 +
1
23 +

1
33 +

1
43 + etc.

)
+

1
4

x4
(

1 +
1
24 +

1
34 +

1
44 + etc.

)
etc.

But the two first series by which x is multiplied, even though both have an
infinite sum, nevertheless taken together have a finite sum. For, if n terms are
taken of both of them, it will be
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ln(n + 1)− 1− 1
2
− 1

3
− 1

4
− · · · − 1

n
.

But above (§ 142) we found that it is

1 +
1
2
+

1
3
+

1
4
+ · · ·+ 1

n
= Const. + ln n +

1
2n
− A

2n2 +
B

4n4 − etc.

and this constant will be found to be = 0.5772156649015325. If one puts n = ∞,
it will be

1 +
1
2
+

1
3
+

1
4
+ · · ·+ 1

∞
= Const. + ln ∞,

whence the value of those two series continued to infinity will be

= ln(∞ + 1)−Const.− ln ∞ = −Const.

From this it will be

ln S = −x · 0.5772156649015325

+
1
2

xx
(

1 +
1
22 +

1
32 +

1
42 +

1
52 + etc.

)
− 1

3
x3
(

1 +
1
23 +

1
33 +

1
43 +

1
53 + etc.

)
+

1
4

x4
(

1 +
1
24 +

1
34 +

1
44 +

1
54 + etc.

)
etc.,

whence the differentials of any order are easily found. For, it will be

dS
S

= −dx · 0.5772156649015325

+ xdx
(

1 +
1
22 +

1
32 +

1
42 +

1
52 + etc.

)
− x2dx

(
1 +

1
23 +

1
33 +

1
43 +

1
53 + etc.

)
+ x3dx

(
1 +

1
24 +

1
34 +

1
44 +

1
54 + etc.

)
etc.
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But if these series are collected into one sum, it will be

dS
S

= −dx · 0.5772156649015325+
xdx

1(1 + x)
+

xdx
2(2 + x)

+
xdx

3(3 + x)
+

xdx
4(4 + x)

+ etc.

Hence, if x = 0, it will be

dS
S

= −dx · 0.5772156649015325.

From the first expression on the other hand it will be in this case

dS
S

= − 1
2

dx
(

1 +
1
22 +

1
32 +

1
42 + etc.

)
+

1
3

dx
(

1 +
1
23 +

1
33 +

1
43 + etc.

)
− 1

4
dx
(

1 +
1
24 +

1
34 +

1
44 + etc.

)
+

1
5

dx
(

1 +
1
25 +

1
35 +

1
45 + etc.

)
etc.

§385 Hence one is also able to exhibit the differentials of inexplicable func-
tions of this kind in any special case, since here we found the complete
differentials. Therefore, if such functions enter expressions which seem to be
undetermined of which kind we treated some in the preceding chapter, one
will be able to define the values by means of the same method, as it will be
understood from the added examples.

EXAMPLE 1

To determine the value of this expression

1 + 1
2 +

1
3 + · · ·+

1
x

x(x− 1)
− 1

(x− 1)(2x− 1)
.

in the case, in which one puts x = 1.

Let us put
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1 +
1
2
+

1
3
+ · · ·+ 1

x
= S;

from § 372 it will be

S = x
(

1 +
1
22 +

1
32 +

1
42 + etc.

)
− x2

(
1 +

1
23 +

1
33 +

1
43 + etc.

)
+ x3

(
1 +

1
24 +

1
34 +

1
44 + etc.

)
etc.,

or because it also is

S = + 1 +
1
2

+
1
3

+
1
4

+
1
5

+ etc.

− 1
1 + x

− 1
2 + x

− 1
3 + x

− 1
4 + x

− 1
5 + x

− etc.,

if each term of the upper series is combined with the preceding of the lower
series, it will be

S = 1 +
x− 1

2(1 + x)
+

x− 1
3(2 + x)

+
x− 1

4(3 + x)
+ etc.,

which expression, since one has to put x = 1, is more convenient. Therefore,
let x = 1 + ω and it will be

S = 1 +
ω

2(2 + ω)
+

ω

3(3 + ω)
+

ω

4(4 + ω)
+ etc.

or

S = 1 + ω

(
1
22 +

1
32 +

1
42 +

1
52 + etc.

)
= 1 +Bω

−ω2
(

1
23 +

1
33 +

1
43 +

1
53 + etc.

)
+ Cω2

−ω3
(

1
24 +

1
34 +

1
44 +

1
54 + etc.

)
+Dω3

etc. etc.
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Therefore, the total expression having put x = 1 + ω will go over into

1 +Bω− Cω2 +Dω3 − etc.
ω(1 + ω)

− 1
ω(1 + 2ω)

or

ω +Bω + 2Bω2 − Cω2 − etc.
ω(1 + ω)(1 + 2ω)

=
1 +B+ 2Bω− Cω− etc.

(1 + ω)(1 + 2ω)
.

Now put ω = 0 and the propounded value of the expression in the case x = 1
will be

= 1 +B = 1 +
1
22 +

1
32 +

1
42 + etc.;

since this series is = 1
6 π2, it follows that the value in question is = 1

6 π2.

EXAMPLE 2

To find the value of this expression

2x− xx
(x− 1)2 +

ππx
6(x− 1)

−
(2x− 1)(1 + 1

2 +
1
3 + · · ·+

1
x )

x(x− 1)2

in the case x = 1.

Put 1 + 1
2 + 1

3 + · · ·+ 1
x = S and set x = 1 + ω; it will, as we found in the

preceding example, be

S = 1 +Bω− Cω2 +Dω3 − etc.

while

B =
1
22 +

1
32 +

1
42 +

1
52 + etc. =

1
6

ππ − 1

C =
1
23 +

1
33 +

1
43 +

1
53 + etc.

D =
1
24 +

1
34 +

1
44 +

1
54 + etc.

etc.

Therefore, having put x = 1 + ω the propounded expression will take on this
form
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1−ωω

ωω
+

(1 +B)(1 + ω)

ω
− (1 + 2ω)(1 +Bω− Cω2 +Dω3 − etc.)

(1 + ω)ω2 ,

which reduced to the common denominator ω2(1 + ω) becomes

1 + ω−ω2 −ω3 + 2ω2 + ω3 +Bω(1 + 2ω + ωω)− 1−Bω + Cω2 −Dω3 − 2ω− 2Bω2 + 2Cω3 − etc.
ω2(1 + ω)

,

which is reduced to this form

ω2 + Cω2 +Bω3 + 2Cω3 −Dω3 + etc.
ω2(1 + ω)

Now let ω = 0 and 1 + C will result. Therefore, the value of the propounded
expression in the case x = 1 will be = 1 + C and hence will be expressed by
means of this series

1 +
1
23 +

1
33 +

1
43 +

1
53 + etc.;

since its sum can be exhibited neither by means of logarithms nor the circum-
ference of the circle π, the value in question can still not be assigned by means
of another method in a finite way. From these two examples the use which
the differentiation of inexplicable functions can have in the doctrine of series
is seen sufficiently clearly.

§386 In the method to differentiate inexplicable functions treated here we
assumed that the infinitesimal terms of the series A, B, C, D, E etc. are either
= 0 or have finally vanishing differences; if both is not the case, this method
cannot be used. Therefore, I will explain another method not restricted by
this condition which yields the general summation of series derived from the
general term and explained in more detail above [chap. V]. Therefore, let the
letters A, B, C, D, E etc. denote the Bernoulli numbers exhibited in § 122 and
let this inexplicable function be propounded

1 2 3 4 · · · x

S = A + B + C + D + · · · + X,
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and since we showed above (§ 130) that it will be

S =
∫

Xdx +
1
2

X +
AdX

1 · 2dx
− Bd3X

1 · 2 · 3 · 4dx3 +
Cd5X

1 · 2 · 3 · 4 · 5 · 6dx5 − etc.,

it will therefore be easy to exhibit the differential of the function S; for, it will
be

dS = Xdx +
1
2

dX +
AddX
1 · 2dx

− Bd4X
1 · 2 · 3 · 4dx3 +

Cd6X
1 · 2 · 3 · 4 · 5 · 6dx5 − etc.

§387 But if the propounded progression is connected to the geometric series,
in which case its infinitesimal terms are never reduced to constant differences
and therefore the first method cannot be used, then the method treated in §
174 provides us with the solution. For, if this function is propounded

S = Ap + Bp2 + Cp3 + Dp4 + · · ·+ Xpx,

find the values of the letters α, β, γ, δ etc. that it is

p− 1
p− eu = 1 + αu + βu2 + γu3 + δu4 + εu5 + etc.,

having found which, as we exhibited them in § 173, it will be

S =
p

p− 1
· px

(
X− αdX

dx
+

βddX
dx2 −

γd3X
dx3 +

δd4X
dx4 − etc.

)
± Constant which renders the sum = 0, if one puts x = 0, or which satisfies
any other case. Therefore, having taken the differential this constant will go
out of the computation and it will be

dS =
p

p− 1
· pxdx ln p

(
X− αdX

dx
+

βddX
dx2 −

γd3X
dx3 + etc.

)
+

p
p− 1

· px
(

dX− αddX
dx

+
βd3X
dx2 −

γd4X
dx3 + etc.

)
or

dS =
px+1

p− 1

(
Xdx ln p− (α ln p− 1)dX + (β ln p− α)

ddX
dx
− (γ ln p− β)

d3X
dx2 + etc.

)
,

which is the differential in question of the propounded function S.
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§388 But if the propounded inexplicable function consists of factors and
their infinitesimal logarithms have constant differences or not, then by means
of this method the differential of the function can always be exhibited. For, let

1 2 3 4 · · · x

S = A · B · C · D · · ·X.

Since it is

ln S = ln A + ln B + ln C + ln D + · · ·+ ln X,

using the above method involving the Bernoulli numbers it will be

ln S =
∫

dx ln X +
1
2

ln X +
Ad. ln X
1 · 2dx

− Bd3. ln X
1 · 2 · 3 · 4dx3 + etc.,

having differentiated which expression it is

dS
S

= dx ln X +
1
2

d. ln X +
Add. ln X

1 · 2dx
− Bd4. ln X

1 · 2 · 3 · 4dx3

+
Cd6. ln X

1 · 2 · 3 · 4 · 5 · 6dx5 −
Dd8. ln X

1 · 2 · 3 · 4 · 5 · 6 · 7 · 8dx7 + etc.

Hence, if it was X = x that it is

S = 1 · 2 · 3 · 4 · · · x,

after the application it will be

dS
S

= dx ln x +
dx
2x
− Adx

2xx
+

Bdx
4x4 −

Cdx
6x6 +

Ddx
8x8 − etc.,

which form, if x was a very large number, is applied more conveniently than
the one we found before.
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